
3Diversity and
Information Leaks
Stephen Crane, Andrei Homescu, Per Larsen,
Hamed Okhravi, Michael Franz

Almost three decades ago, the Morris Worm infected thousands of UNIX work-
stations by, among other things, exploiting a buffer-overflow error in the fingerd
daemon [Spafford 1989]. Buffer overflows are just one example of a larger class of
memory (corruption) errors [Szekeres et al. 2013, van der Veen et al. 2012]. The
root of the issue is that systems programming languages—C and its derivatives—
expect programmers to access memory correctly and eschew runtime safety checks
to maximize performance. There are three possible ways to address the security is-
sues associated with memory corruption. One is to migrate away from these legacy
languages that were designed four decades ago, long before computers were net-
worked and thus exposed to remote adversaries. Another is to retrofit the legacy
code with runtime safety checks. This is a great option whenever the, often sub-
stantial, cost of runtime checking is acceptable. In cases where legacy code must
run at approximately the same speed, however, we must fall back to targeted mit-
igations, which, unlike the other remedies, do not prevent memory corruption.
Instead, mitigations make it harder, i.e., more labor intensive, to turn errors into
exploits.

Since stack-based buffer overwrites were the basis of the first exploits, the first
mitigations were focused on preventing the corresponding stack smashing ex-
ploits [Levy 1996]. The first mitigations worked by placing a canary, i.e., a ran-
dom value checked before function returns, between the return address and any
buffers that could overflow [Cowan et al. 1998]. Another countermeasure that is



62 Chapter 3 Diversity and Information Leaks

now ubiquitous makes the stack non-executable. Since then, numerous other coun-
termeasures have appeared and the most efficient of those have made it into prac-
tice [Meer 2010]. While the common goal of countermeasures is to stop exploita-
tion of memory corruption, their mechanisms differ widely. Generally speaking,
countermeasures rely on randomization, enforcement, isolation, or a combination
thereof. Address space layout randomization is the canonical example of a purely
randomization-based technique. Control-Flow Integrity (CFI [Abadi et al. 2005a,
Burow et al. 2016]) is a good example of an enforcement technique. Software-fault
isolation, as the name implies, is a good example of an isolation scheme. Code-
Pointer Integrity (CPI [Kuznetsov et al. 2014a]) is an isolation scheme focused on
code pointers. While the rest of this chapter focuses on randomization-based mit-
igations, we stress that the best way to mitigate memory corruption vulnerabilities
is to deploy multiple different mitigation techniques, as opposed to being overly
reliant on any single defense.

3.1 Software Diversity
Randomization, or software diversity [Cohen 1993, Larsen et al. 2014], essentially
hides implementation details, such as the memory layout, from adversaries. This
means that adversaries cannot rely on code, variables, or other program artifacts
residing at a known location. This idea has similarities with biodiversity wherein
some fraction of animals in a herd will have immunity against environmental
hazards due to random differences in their immune systems. One can also draw
parallels to kinetic warfare insofar that belligerents seek to conceal their locations
to avoid becoming an easy target.

Because adversaries in the digital domain seek to exploit implementation flaws
that trigger invalid memory accesses, the inputs that cause the unintended behavior
are highly implementation dependent. This is why randomization of the code
layout has a destabilizing effect on code-reuse attacks that depend on code snippets
(gadgets in ROP parlance [Shacham 2007]) residing at known addresses.

Adversaries generally have two ways to bypass diversified binaries: guessing or
reconnoitering their target. Repeatedly mounting an attack that crashes the victim
program [Bittau et al. 2014, Shacham et al. 2004, Evans et al. 2015a] has visible side
effects that often facilitate detection. Information leakage, on the other hand, is
often silent and leaves few traces, if any, on the victim system. In the rest of this
chapter, we focus on bypasses of diversity relying on information leakage, particu-
larly code layout disclosure, and the countermeasures available to defenders.



3.2 Information Leakage 63

3.2 Information Leakage
In their seminal paper on stack guards, Cowan et al. mention that their techniques
are not impossible to bypass, but to do so would require the attacker to examine the
entire memory image of the program [Cowan et al. 1998 (p. 4)]. The tacit assumption
is that the attacker cannot easily leak the memory contents of a running program.
Their follow-up work focusing on pointers also cites the difficulty of accessing pro-
cess memory in their security argument: “To obtain the key, the attacker would
either have to already have permission to manipulate the process with debugging
tools (e.g., ptrace) or would have to have already successfully perpetrated a buffer
overflow attack against the process” [Cowan et al. 2003]. Strackx et al. [2009] were
the first to examine what they termed the “Memory Secrecy Assumption” underpin-
ning randomizing defenses at the time. The gist of their argument is that memory
secrecy relies on the absence of memory corruption vulnerabilities, an assumption
that, if valid, would also obviate the need for memory corruption mitigations, such
as ASLR, stack canaries, and other diversity techniques. Information leakage can
arise from format string vulnerabilities that cause the defective program to print
out internal data or code rather than the intended output. Strackx et al. point out
that buffer over-reads are a more common source of information leakage and de-
monstrate a concrete attack in which ASLR and ProPolice [Etoh and Yoda 2000] can
be bypassed thanks to such over-reads.

Serna [2012] highlighted that type confusion and use-after-free vulnerabilities
as well as application-specific vulnerabilities also facilitate information leakage.
The presentation also highlighted that the widespread deployment of ASLR and
stack canaries in all modern operating systems had made information leakage
a requirement to write reliable exploits. Most importantly, Serna noted that the
combination of attacker-controlled scripting and memory corruption errors put
adversaries in a powerful position.

Snow et al. [2013] translated Serna’s observation into practice by using an over-
flowed buffer object to systematically scan the memory of the process running a
malicious script. Just-in-time code-reuse, JIT-ROP, attacks generalize previous at-
tacks and are worth summarizing here. The general goal of JIT-ROP is to find as
many mapped code pages as possible by starting from a small root set of known
pages. The discovery of additional code pages happens by recursively scanning each
page for references to other pages and adding these pages to a working set. In
context of browsers, the JIT-ROP technique is used to break out of a sandboxed
scripting environment, such as a JavaScript VM hosted by a browser. This lets the ad-
versary execute arbitrary code with all permissions granted to the operating system
process. To do so, the adversary tricks an unsuspecting user into visiting a web page



64 Chapter 3 Diversity and Information Leaks

serving a malicious script. The script constructs a write-what-where primitive out of
a memory corruption vulnerability such that the adversary can access any mapped
location within the virtual address space of the process. Since the code layout is not
known to the adversary a priori, the exploit fails if it touches unmapped memory
and the resulting segmentation fault is not handled by the program. Segmentation
faults are avoided by scanning for pointers to code in the data memory surrounding
the overflowed object (using a priori knowledge of the heap layout). Next, the ex-
ploit scans the code page identified by the code pointer. Since the virtual-to-physical
memory mapping happens at the page granularity, it is always safe to scan an entire
page, which is usually 4KiB in size. Snow et al. realized that they could implement
a disassembler in JavaScript to recover references between code pages and use the
recovered references to discover additional code pages recursively. The recursive
disassembly step terminates when the script has discovered enough code snippets
to mount a traditional code-reuse attack.

3.3 Mitigating Information Leakage
Backes and Nürnberger [2014] were first out of the gate with a response to JIT-
ROP attacks. Their technique, Oxymoron, splits the code segment into 4KiB pages.
Furthermore, any code reference to another page is indirected through a lookup
table. The base of the lookup table is hidden using the vestiges of x86 segmentation.
This prevents the recursive disassembly step in the JIT-ROP attack. An interesting
aspect of Oxymoron is that the scheme was designed to allow code pages to be
shared among processes. This is an important optimization for shared libraries
and one that is overlooked by most of the academic literature although it is crucial
in practice.

Davi et al. [2015] presented a different response to JIT-ROP attacks—Isomeron—
motivated by their finding that the original JIT-ROP technique could be modified
slightly to bypass Oxymoron. The key to the Oxymoron bypass was the finding that
data memory contains enough pointers to discover enough code pages to mount
an attack, even if it is not possible to discover additional pages through inter-page
references thanks to Oxymoron. Virtual method tables for the C++ dispatch mech-
anism, for example, enable pointer harvesting and lessen the need for recursive
disassembly. The Isomeron defense [Davi et al. 2015] frustrates return-oriented
programming techniques by cloning each program function and randomly picking
between original and function clones during execution. Code-reuse exploits need



3.3 Mitigating Information Leakage 65

not use returns to chain gadgets, so the Isomeron technique has shortcomings of
its own.

Backes et al. [2014] advocated for a more principled way to counter information
leakage: preventing read accesses to code pages. Their implementation—eXecute-
no-Read or just XnR—presented a work-around for all x86 processors whose mem-
ory management units lack native support for executable, non-readable pages. To
work around this limitation, XnR prevents reads by clearing the present bit for
nearly all code pages. Normally, the CPU uses the present bit to track which pages
are present in RAM and or paged out to disk. Accesses to a page with the present
bit cleared, causes the CPU to generate a page fault which the operating system
handles by reading the missing page from the pagefile. XnR modifies the operat-
ing system’s page fault handler to mark XnR pages present (without evicting their
contents) if and only if the present bit was cleared to prevent read accesses and
if the page fault was triggered by an instruction fetch, i.e., an attempt to execute
the page was made. If, on the other hand, the fault was generated by a read ac-
cess to an executable page, the XnR page fault handler terminates the program
before any memory contents can be leaked. The number of page faults to handle
determines the overhead of the XnR approach. To avoid excessive slowdowns, XnR
keeps a small window of recently executed pages readable and executable—and
thus exposed to information leaks. However, XnR uses a sliding window of two
to eight pages to limit the amount of code that can be leaked at any point in the
execution.

Gionta et al. [2015] developed a system—HideM—that similarly made code
pages unreadable but does so by using the Translation Look-aside Buffer (TLB) in a
special way known as TLB-desynchronization. On processors that use separate TLBs
for data and code, the two TLBs are usually kept in sync, which gives an executing
process the same view of its address space regardless of the type of access. HideM
configures the memory management unit such that accesses to the same virtual
address translate to different physical addresses depending on the access type.
This way, instruction fetches proceed as intended whereas read accesses—whether
malicious or not—go to a different physical copy of the text section. To ensure that
legitimate reads to constant data stored on code pages function correctly, HideM
zeros out all instructions in the readable copy of the text section while preserving
all embedded constant data. This is a point in favor of HideM since XnR does
not explicitly address the problem of reading embedded constants. On the other
hand, most modern processors have unified TLBs and thus do not support TLB-
desynchronization as required by HideM.



66 Chapter 3 Diversity and Information Leaks

JMP label

CALL Func_A

Code page 1

Readable-writable

Readable-executable

Direct  
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label: 
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 3.1 Direct and indirect memory disclosure. (Based on Crane et al. [2015])

While XnR and HideM goes a long way toward preventing direct leakage through
adversarial reads, adversaries can also make inferences about the code layout by
inspecting code pointers stored in the data segments of a running process. The
difference between these two types of leakage is illustrated in Figure 3.1. The
defenses we’ve discussed so far have protected the code pages and references
between them (top half of figure) but not references from data pages to code pages
(bottom half of figure). The utility of leaking a function pointer or return address
when code pages cannot be read directly depends on the granularity of the code
layout diversity. If each individual instruction is placed at a random location [Hiser
et al. 2012], such leaks mainly facilitate whole-function reuse. However, the most
granular diversity techniques tend to have high overheads [Larsen et al. 2014] and
may prevent page sharing between processes [Backes and Nürnberger 2014, Crane
et al. 2016].

Crane et al. [2015] built a system—Readactor—that explicitly seeks to prevent
both direct and indirect leakage of code layout. Rather than emulating execute-no-



3.3 Mitigating Information Leakage 67

read permissions, Readactor leverages the extended page translation mechanisms
found in modern processors (circa 2008 and onward) to accelerate hypervisors.
Memory accesses inside virtual machines undergo two levels of address transla-
tion: (i) guest virtual to guest physical translation and (ii) guest physical to host
physical translation. The effective permission of an access to host physical mem-
ory is the intersection of the permissions used in the two translation steps. Unlike
the first translation step, which forces read permissions on executable pages, the
second translation step can represent true execute-only memory permissions. The
Readactor system used a lightweight hypervisor to activate the extended page tables
on a per-process basis to protect individual applications running on a traditional
host system, i.e., outside a traditional hypervisor. Rather than allowing accesses to
constant data on code pages, Redactor used a modified compiler to eliminate all
such reads. The major open source C/C++ compilers later stopped emitting con-
stants on code pages for performance reasons, which also benefits execute-only
techniques.

Readactor tackles indirect leakage by introducing a pointer indirection layer so
no pointer stored in a readable memory region points directly to its target. All that
adversaries can observe are pointers into a special execute-only area containing
trampolines (direct jumps) to the actual functions. Because the trampolines are
stored on pages with execute-only memory, they cannot be dereferenced by an ex-
ploit. Adversaries therefore cannot learn the locations of functions in the absence of
hardware-level side channels [Gras et al. 2017] or implementation errors. Readactor
also demonstrated that just-in-time compiled code can be made compatible with
execute-only memory with modest effort; the need to also protect JITed code from
indirect disclosure was highlighted but not implemented. The necessity of avoiding
indirect disclosure of JITed code was reiterated by Maisuradze et al. [2017].

A few variations of and extensions to the basic ideas behind XnR, HideM, and
Readactor are worth mentioning. Schuster et al. [2015] demonstrated a new type of
code-reuse attack called Counterfeit Object Oriented Programming (COOP), which
is capable of bypassing control-flow integrity defenses that are not C++ aware. C++
awareness, in this context, simply means using information about class hierarchies
to further constrain the set of outgoing control-flow edges at a C++ virtual method
call site. C++-aware CFI is straightforward to implement when program source code
is available, whereas techniques to recover class hierarchies via binary analysis took
a while to appear [Pawlowski et al. 2017]. Since COOP attacks execute entire C++
methods without regard for the actual code layout, such attacks can also bypass
defenses such as Readactor. COOP attacks are not entirely layout agnostic, however;
they require knowledge of the layout of C++ objects and the layout of C++ virtual



68 Chapter 3 Diversity and Information Leaks

method tables. Since objects must be stored in RW memory, their layouts are
difficult to hide. Vtables, on the other hand, contain a mix of data and pointers
to code, the latter part of which can be hidden and randomized along the lines
of the Readactor system. Crane et al. [2015] presented a counter to COOP attacks
called Readactor++ that splits virtual method tables into two parts: one containing
data and another containing code (direct jump trampolines to virtual methods).
The code part, called the xvtable, is protected by execute-only permissions, and
randomized. To prevent brute force attacks, dummy entries that are never activated
during normal program execution are added to each xvtable [Crane et al. 2013].

Supporting execute-only memory is not always straightforward and most ap-
proaches rely on using the memory management unit in unconventional ways.
For systems where MMU “tricks” are infeasible, such as systems having a sim-
pler memory protection unit, execute-only permissions can be enforced in soft-
ware [Braden et al. 2016] using techniques conceptually similar to software-fault
isolation [Wahbe et al. 1993, McCamant and Morrisett 2006].

Lu et al. [2015] demonstrated that it is possible to use a pointer indirection
layer to prevent indirect leakage without using execute-only memory to protect
against direct leakage. Their proposed solution, ASLR-Guard, uses the vestiges of
x86 segmentation support to hide the location of a table that translates between
code locators (visible to adversaries) and actual code addresses (hidden). Lu et al.
argue that without a way to disclose code addresses, there is no need to prevent
against direct leakage since a 64-bit virtual address space is large enough to resist
brute force attempts at finding an ASLR’ed code segment. Later research on crash
resistance and allocation oracles have undermined that assumption [Gawlik et al.
2016, Oikonomopoulos et al. 2016, Göktaş et al. 2016]. On a practical level, the
ASLR-Guard implementation does not bound the growth of code locators and thus
its memory overhead.

Chen et al. [2017] demonstrated support for execute-only memory for sourceless
binaries. Specifically, their NORAX system is able to protect 64-bit ARM (AArch64)
binaries. Notably, the AArch64 platform offers native support for execute-only
memory, unlike current x86 CPUs. A general challenge of binary analysis and as-
sembly is to accurately separate code and data. Code misclassified as data (data
misclassified as code) can lead to page faults when using DEP (execute-only mem-
ory) to mitigate exploits. NORAX addresses this challenge using a combination
of offline binary rewriting and online load/runtime monitoring. The offline step
conservatively estimates code regions and moves data bytes embedded in these
regions to a new data section. The original data bytes are overridden with unique
magic numbers that are recognized by the NORAX loader and runtime monitor.



3.4 Address Oblivious Code Reuse 69

This lets the NORAX loader adjust any references to the original data bytes, which
are now inaccessible since all code is mapped with execute-only permissions. If
an attempt to read a code page happens at runtime, the NORAX runtime monitor
determines whether the associated access violation was generated by a legitimate
access (missed by the offline analysis) or whether it is a malicious access, which
should cause program termination.

3.4 Address Oblivious Code Reuse
Rudd et al. [2017] explored the security properties of an ideal version of leakage-
resilient code diversity, i.e., one that is not weakened by implementation-level flaws.
Their finding was that even an ideal implementation does not stop all types of code
reuse. The reason is that code-hiding mechanisms, such as execute-only memory,
only apply to code pages, not code locators (e.g., function pointers and return
addresses or pointers to Readactor trampolines). Code locators must be readable
and writable for the program to function properly. Even with defenses such as
Readactor and ASLR-Guard in place, adversaries can manipulate code locators used
in place of traditional code pointers.

Rudd et al. used a data memory disclosure vulnerability to observe the state
of a protected program as it executes. The fact that programs execute in a way
that inherently leaks information about the state of execution enables profiling
of the code indirection layer. Adversaries can correlate the execution state of their
own unprotected program instance to that of a remote, protected instance at the
time of the memory disclosure. Therefore, profiling can inform adversaries that a
code identifier points to a function F in the protected program (without revealing
the address of F ). Adversaries can use this mapping from code identifiers to the
underlying functions to construct a position-independent, whole-function code-
reuse attack. Rudd et al. called this Address-Oblivious Code Reuse (AOCR) since the
attack executes all code through code identifiers without any knowledge of the
actual code layout.

Although AOCR attacks are possible, they require more effort to construct than
their position-dependent equivalent. First of all, the state of the system changes
rapidly, which makes it challenging to correctly time memory disclosures of code
identifiers. If the target application is multi-threaded, however, memory corrup-
tion allows an adversary to manipulate the variables controlling entry to a critical
section. Mutexes, for instance, are usually set by a thread as it enters the mutex
such that other threads wanting to enter will suspend until the first thread has
exited the critical section protected by the mutex. For instance, an adversary may



70 Chapter 3 Diversity and Information Leaks

use one thread TA to manipulate the mutex in a way that causes another thread TB

to block. This gives the adversary a chance to inspect memory without the timing
unpredictability resulting from the execution of TB.

Once the adversary has discovered a mapping from code locators to functions,
he must find a way to (i) hijack the control flow, (ii) pass proper arguments to
functions used in the exploit, and (iii) chain function calls. The control flow can be
hijacked by using memory corruption to swap a code locator with the code locator
corresponding to the first function in the malicious call chain. Rudd et al. solved
the second challenge by reusing functions that read all their arguments from global
variables. This requires knowledge of how global variables are laid out, but that too
can be profiled and, in contrast to code, global variables must be readable. The third
challenge, chaining calls through code locators, was solved using Malicious Loop
Redirection (MLR). This technique requires the vulnerable application to contain
a loop whose body contains an indirect call site. Specifically, the loop must (1) have
a loop condition that is attacker controllable and (2) call functions through code
pointers/locators An ideal loop looks like this:

while (task) { task->fptr(task->arg); task = task->next; }

where task points to a linked list of (fptr, arg) pairs in attacker-controlled mem-
ory. Note that register randomization is not an effective defense because the se-
mantics of the call dictates that the first argument is taken from task->arg and
moved to rdi to conform to the x86_64 ABI. Note that MLR is conceptually similar
to the loop-gadget concept in COOP and Subversive-C code-reuse attacks [Lettner
et al. 2016, Schuster et al. 2015].

Using these techniques, Rudd et al. demonstrated working AOCR attacks against
two popular web servers protected by Readactor: Nginx and the Apache HTTP
Server. Readactor served as a stand-in for leakage-resilient diversity techniques in
general since it is the most comprehensive implementation of leakage-resilient di-
versity available. Note that approaches based on destructive code reads [Tang et al.
2015, Werner et al. 2016] are also vulnerable to AOCR since these attacks never
attempt to read the actual code. Snow et al demonstrated additional attacks specif-
ically targeting destructive-code-read techniques [Snow et al. 2016].

3.5 Countering Address-Oblivious Code Reuse
Recall that code-pointer hiding via trampolines already limits the set of addresses
that are reachable from an attacker-controlled indirect branch. Even if an attacker
discloses all trampoline pointers, only function entries, return sites, and individual



3.5 Countering Address-Oblivious Code Reuse 71

instructions inside trampolines are exposed. We therefore implemented an exten-
sion to the Readactor code-pointer hiding mechanism, which we call Code-Pointer
Authentication (CPA). CPA adds authentication after direct calls and before indi-
rect calls to prevent the control-flow hijacking step as explained in Section 3.4 and
thus mitigate AOCR attacks. One of the benefits of randomization-based defenses
is that they do not rely on static program analysis, an advantage which helps them
scale to complex code bases. To avoid relying on static program analysis, we must
use different techniques to authenticate direct and indirect calls since we do not
know the set of callees in advance.

3.5.1 Authenticating Direct Calls and Returns
Our general approach to authenticate direct calls uses cookies. A cookie is simply
a randomly chosen value that is loaded into a register by the caller and read out
and checked against an expected value by the callee. For returns, the callee loads
another cookie into a register before returning, and the register is checked for the
expected value directly after the return. Each function has two unique, random
cookies: one to authenticate direct calls to the function (forward cookie, FC) and
another to authenticate returns (return cookie, RC). Because the instructions that
set and check cookies are stored in execute-only memory and the register storing
the cookie is cleared directly after the check, attackers cannot leak or forge the
cookies.

Our prototype implementation chooses cookie values at compile time and in-
serts these values into the execute-only code. A full-featured implementation could
randomize the cookie values at load time so they vary between executions. This
could easily be accomplished by marking all cookie locations during compilation,
iterating over these locations during program initialization, and writing new cook-
ies into the code before re-protecting the memory with execute-only permission.

The left side of Figure 3.2 shows how we authenticate an example direct function
call from foo to bar. Dark gray labels indicate how we extend the Readactor code-
pointer hiding technique with authentication cookies. Before transferring control
to the direct call trampoline t_bar along control-flow edge ©1 , we load bar’s for-
ward cookie into a scratch register. Edge ©2 transfers control from t_bar to bar.
The prologue of bar checks that the register contents match the expected forward
cookie value and clears the register to prevent spilling its contents to memory. Be-
fore the bar function returns along edge ©3 , we load the backward cookie for bar
into the same scratch register. At the return site in foo, we check that the register
contains the backward cookie identifying bar as the callee. The return site then
clears the register.



72 Chapter 3 Diversity and Information Leaks

foo:

jump t_bar
r_foo:

t_bar: call bar
jump r_foo

bar:
…

ret

3

41

2

set r9 ← RC

check r9 = RC

check r9 = FC

set r9 ← FC

foo:
rax = t_base[idx]
        

jump t_foo
r_foo:

t_foo: call *rax
jump r_foo

bar:
…

ret

8

95

6

check r9 = 32RC 

check HMAC

t_base: jump …
jump bar + Δ 

7

idx

HMAC idx

addr' idx'HMAC'

addr

hidden by X-only

observable

authenticating
direct calls and returns

authenticating indirect calls and returns

RW dataXO code and trampolinesXO code and trampolines

SipHash(addr|idx,key) = HMAC?

set r9 ← RC

check r9 = FC

Figure 3.2 Code-pointer authentication. Direct calls and returns are illustrated in the leftmost
third of the figure; indirect calls and returns are shown in the rightmost two-thirds.
Light gray boxes contain execute-only code and white boxes contain data. Dark gray
labels show where we insert additional instructions to prevent address harvesting
attacks. The =32 operator in the check after edge 9 indicates that we only check the
lower 32 bits of the return cookie.

The return address pushed on the stack by the call instruction in t_bar leaks
the location of the following jump instruction as well as the direct call itself. If the
adversary manipulates an indirect branch to execute control-flow edge ©2 , the check
at the target address will cause the forward cookie check to fail and thus the attack
to fail. Analogously, redirecting control to flow along edge ©4 will cause the check
at r_foo to fail.

3.5.2 Securing Indirect Calls and Returns
Without static program analysis, we don’t know the target of an indirect call at
compile time and thus enforce bounds on the program control flow. Cookies, as
used in the direct call case, are therefore not applicable to indirect calls. However,
we can still authenticate that the function pointer used in an indirect call was
correctly stored and not maliciously forged without requiring any static analysis.

All function pointers in a program protected by Readactor are actually pointers
to trampolines that obscure the true target address. Inspired by the techniques of
CCFI [Mashtizadeh et al. 2015], we change the representation of trampoline point-
ers (which are stored in attacker-observable memory) to allow for authentication.



3.5 Countering Address-Oblivious Code Reuse 73

In Readactor’s code-pointer hiding mechanism, a trampoline pointer is simply the
address of the forward trampoline. With CPA, the trampoline pointer representa-
tion is composed of a 16-bit index (idx) into a table of trampolines (starting at
t_base) and a 48-bit Hash-based Message Authentication Code (HMAC). We show
two such pointers on the right side of Figure 3.2. Using a trampoline index prevents
leakage of the forward trampoline pointer address since the base address of the ar-
ray of forward trampolines t_base can be hidden in execute-only code. We found
that programs need less than 216 forward pointers in practice, so it suffices to use
the lower 16 bits of a 64-bit word for the index (this can be adjusted as needed for
larger applications). We compute the HMAC by hashing the index along with the
least significant 48 bits of its virtual memory address. With this HMAC we can de-
tect if the adversary tries to replace a code pointer with another pointer harvested
from a different memory location. We find that SipHash [Aumasson and Bernstein
2012], which is optimized for short messages, is a good choice of HMAC for our
approach.

The middle third of Figure 3.2 illustrates the case where the function foo calls
bar indirectly through a function pointer. Again, dark gray labels highlight our ex-
tensions to Readactor’s code pointer hiding technique. The indirect call site in foo

loads the (HMAC, index) pair from memory, recomputes the HMAC using the (ad-
dress, index, key) tuple, and compares the two (see rightmost third of Figure 3.2). If
HMACs match, the index is used to lookup the address of the forward pointer which
is subsequently used to execute control-flow edge ©6 . Note that the forward trampo-
line that creates edge ©7 does not target the first instruction in bar; instead, we add
a delta to the address of bar to skip the forward cookie check that authenticates
direct calls to bar (e.g., edge ©2 ).

As explained in Section 3.4, AOCR attacks swap two pointers to hijack the
program control flow. Because the address of the pointer is used to compute the
HMAC, moving the pointer without re-computing the HMAC will cause the HMAC
check before all indirect calls to fail unless the two (address, index) pairs collide
in the hash. Attackers can still harvest and swap (HMAC, index) pairs stored to the
same address at different times. See Section 3.6.1 for a more complete security
analysis.

Returns from indirect calls make up the fourth and final class of control flows
that we must authenticate. The callee sets a return cookie before the callee returns
and checks the cookie at the return site; see edges ©8 and ©9 in Figure 3.2. We
again clear the cookie register directly after the check to prevent leaks. The cookie
check at the end of arrow ©9 must pass for all potential callees. Therefore, we set
the lower 32 bits of all backward cookies to the same global random value and only



74 Chapter 3 Diversity and Information Leaks

check the lower halfword of the backward cookie at the return site. This ensures
that returns only target return sites; however, any return instruction can target
indirect-call-preceded gadgets under this scheme. We did not reuse any indirect
call-preceded gadgets in our harvesting attack since these are also protected by
register randomization and callee-saved stack slot randomization. It is possible to
further restrict returns from indirect calls by taking function types into account.
Rather than setting the lower 32 bits of return cookies to the same random value,
we can use different random values for different types of functions.

3.6 Evaluation of Code-Pointer Authentication

3.6.1 Security
Code-pointer authentication prevents reuse of the remaining exposed trampoline
pointers, even if the attacker has harvested all available trampoline locations. This
authentication mitigates AOCR attacks. To show how, we systematically consider
each possibly exposed indirect branch target in turn.

Direct call trampoline entry (edge ©1 in Figure 3.2). An attacker can harvest the
location of the backward jump (jump r_foo) in the call trampoline from the
return address on the stack. In the original Readactor defense, it is possible
to compute the address of the previous instruction from this pointer and
invoke t_bar.

With direct call authentication, each direct callee function checks that its
specific, per-function cookie is set prior to calling it. If the attacker cannot
forge the callee function’s cookie, this check will fail. We store the cookie
as an immediate value in execute-only memory and pass it to the callee in
a register. After performing the cookie check, the callee clears the register.
Thus, direct call cookies cannot leak to an adversary, and the attacker has a
2−64 chance of successfully guessing the correct 64-bit random cookie value.
Since the attacker cannot forge a correct cookie before an indirect branch
to a direct call cookie, direct call trampoline entry points are unavailable as
destinations for an attack.

Direct call trampoline return (edge ©3 in Figure 3.2). Harvesting a return address
corresponding to a direct call trampoline gives the attacker the location of the
backward jump in a call trampoline. In Readactor, this destination allows the
attacker to invoke a call-preceded gadget beginning at r_foo in the example.

We also protect these destinations with an analogous, function-specific
return cookie. Directly before a callee function returns, it sets its function-



3.6 Evaluation of Code-Pointer Authentication 75

specific return cookie. The return site verifies that the expected callee’s re-
turn cookie was set before continuing execution. This prevents the attacker
from reusing this destination unless the control-flow edge would be allowed
during normal program execution.

Indirect call trampoline entry (edge ©5 in Figure 3.2). Similarly, an attacker can
harvest indirect call trampoline locations from the stack and dispatch to the
beginning of an indirect call trampoline. However, this destination is trivial
to attackers, since they must set another valid, useful destination for the in-
direct call before invoking the trampoline. The attack could always dispatch
straight to this final destination instead of to the indirect call trampoline.
Thus, we do not need to protect indirect call trampoline entry points from
reuse.

Indirect call trampoline return (edge ©8 in Figure 3.2). Analogous to the direct
call case, the attacker can dispatch to the backward edge of an indirect
call trampoline to invoke an indirect-call-preceded gadget. This is a more
challenging edge to protect without static analysis, since the indirect call
site cannot know which function-specific return cookie to check.

Since the caller does not know the precise callee, we enforce a weaker
authentication check on indirect call return destinations. By splitting re-
turn cookies into a global part and function-specific part, we can still ensure
that the return site must be invoked by a return, not an indirect call. We be-
lieve that the fine-grained register randomization implemented in Readactor
largely mitigates the threat of indirect-call-preceded gadget reuse, since the
attacker cannot be sure of the semantics of the gadget due to execute-only
memory.

Function trampolines (edge ©6 in Figure 3.2). Function trampoline harvesting
and reuse is the easiest attack vector against code-pointer hiding schemes. In
Readactor, after harvesting function trampolines, the attacker can overwrite
any return address or function pointer with a valid function trampoline
destination and perform whole-function reuse.

We prevent reuse of function trampolines by changing the function-
pointer format to include an HMAC tying the function pointer to a specific
memory address. This prevents reuse of function pointers from returns as
well as most swaps of function pointers in memory.

Since function pointers are no longer memory addresses in our authenti-
cation scheme, the attacker cannot use a function pointer as a return address



76 Chapter 3 Diversity and Information Leaks

at all. The return would interpret the address as an HMAC-Idx pair and fail
to verify the HMAC, crashing the program.

Function pointers cannot be swapped arbitrarily under this defense, since
the pointer is tied to its address in memory by the HMAC. If a pointer P at
address A is moved to address B, the HMAC check will fail when loaded
from address B. Thus the attacker must either forge a valid HMAC or have
harvested P from the targeted location in memory at a previous point in
execution.

HMAC Forgery. We first address the possibility of forging a valid HMAC for a
function and pointer address pair without ever having seen a valid HMAC for that
pair. SipHash is designed to be forgery resistant, thus the probability of correctly
forging a valid HMAC for a pointer at an address not previously HMACed is expected
to be 2−48, based on the size of the HMAC tag. Additionally, since we can store the
HMAC key in execute-only memory, an attacker cannot disclose the 128-bit key and
thus is limited to brute-forcing this key.

Replay Attacks. As in other pointer encryption schemes [Mashtizadeh et al. 2015,
Cowan et al. 2003], HMACs do not provide temporal safety against replay attacks
on function pointers. That is, a function pointer can be harvested at one point in
program execution and later rewritten to the same address.

3.6.2 Performance
To evaluate the performance of our code-pointer authentication, we applied the
protections on top of the Readactor++ system. We measured the performance
overhead of both direct call authentication and function-pointer authentication on
the SPEC CPU2006 benchmark suite. These results are summarized in Figure 3.3.
All benchmarks were measured on a system with two Intel Xeon E5-2660 processors
clocked at 2 Ghz running Ubuntu 14.04.

With all protections enabled, we measured a geometric mean performance over-
head of 9.7%. This overhead includes the overhead from basic Readactor call and
jump trampolines and compares favorably with the 6.4% average overhead reported
by Crane et al. [2015]. We also measured the impact of direct call authentication
and indirect call authentication individually (labeled DCA and ICA in the figure,
respectively). We found that indirect code-pointer authentication generally adds
more overhead (6.7% average) than direct code-pointer authentication (5.9% aver-
age), although this is strongly influenced by the program workload, specifically the
percentage of calls using function pointers.



3.6 Evaluation of Code-Pointer Authentication 77

50

40

30

20

10

0

perlb
ench

bzip
2

gcc
m

cf

gobm
k

hm
m

er
sjeng

lib
quantu

m

h264re
f

asta
r

xala
ncbm

k
m

ilc

nam
d

dealII

sople
x

lb
m

sphin
x3

Geo M
ean

P
er

fo
rm

an
ce

 s
lo

w
d

ow
n

 (%
) DCA

ICA
Full CPA

Figure 3.3 Performance overhead of code-pointer authentication on SPEC CPU2006. All measure-
ments include the overhead of the Readactor++ transformations [Crane et al. 2015].

We observed that h264ref stands out as an interesting outlier for indirect
call authentication. This benchmark repeatedly makes a call through a function
pointer in a hot loop. To make matters worse, the target function is a one-line
getter, thus our instrumentation dominates the time spent in the callee. This
benchmark in particular benefits greatly from inlining the HMAC verification to
avoid the extra call overhead. To speed up HMAC verification, especially in this
edge case, we implemented a small (128 byte), direct-mapped, hidden cache of
valid HMAC entries. This hidden cache is only accessed via offsets embedded in
execute-only memory and is thus tamper resistant. Before recomputing an HMAC,
the verification routine checks the cache to see if the HMAC is present.

We found three corner cases in SPEC where we could not automatically compute
a new HMAC when a function pointer was moved. This is because the program first
casts away the function-pointer type and then copies the pointer inside a struct. We
had to insert a single manual HMAC in gcc and another in povray to handle these
edge cases. perlbench stores function pointers in a growable list, which is moved
during reallocation. Since our prototype does not yet instrument the libc realloc
function, we had to manually instrument these operations. The CCFI [Mashtizadeh
et al. 2015] HMAC scheme requires similar modifications. Finally, Readactor is not
fully compatible with C++ exception handling, so we were not able to run omnetpp

and povray, which require exception handling.



78 Chapter 3 Diversity and Information Leaks

3.7 Conclusion
There are three ways to bypass diversity-type mitigations. The first is to target
unprotected areas, the second is to employ brute force guessing, and the third
relies on information leakage. The first two ways are relatively straightforward to
counter through good engineering. The third option, however, remains the most
challenging to fully address. Although it is possible to prevent leakage (perhaps
modulo hardware side channels) of the code layout, address-oblivious attacks,
though technically complex, are feasible. It is possible to mitigate address-oblivious
code reuse, too, although the solution we designed and evaluated adds overhead
and complexity to what was initially a fairly simple defense strategy.

If history is any guide, retrofitting security into fundamentally insecure lan-
guages without hampering performance will remain an open research challenge
in the foreseeable future. The specific strand of research presented here is not the
“one true answer” to all security problems; just as is the case with mitigation alter-
natives, such as CFI and CPI. Instead, we describe our broader expectations for the
short, medium, and long term based on recent industry developments:

. In the short term, deploying better mitigations is the best option. This is
not a particular insight of ours; one simply has to look at the direction in
which major software developers are headed. At the time of writing, work is
under way to improve the granularity of code randomization schemes, and
hardware support for execute-only memory is forthcoming for Intel and al-
ready available for ARM. Although deployment of leakage-resilient diversity,
as enabled by these techniques, is unlikely to stop all exploits, it does con-
siderably raise the bar on attackers. At the same time, control-flow integrity
techniques are supported by all major compilers, and hardware support is
similarly forthcoming from both Intel and ARM. Diversity and CFI are not
mutually exclusive techniques, and either will stop a sufficiently determined
adversary on its own. Rather, we believe a combination of disparate exploit
mitigations will offer the best return on investment.

. Unlike the short-term options, medium-term options will require some
source code changes. Access control mechanisms, such as SELinux, when
correctly implemented, help implement the principle of least privilege such
that vulnerabilities in unprivileged code cannot be used to carry out privi-
leged operations. Legacy applications are unlikely to be broken into indepen-
dent submodules based on the privileges they require, however. Therefore,
manual refactoring may be required to realize the full potential of access
control mechanisms. Similarly, techniques that retrofit type and memory



3.7 Conclusion 79

safety into legacy C/C++ code require that bad casts and invalid memory ac-
cesses are removed from the application before a protected version can be
released.

. Whereas medium-term options may require minor changes and fixes to
existing source code, the best long-term option is likely to very gradually
retire C/C++ code. This will take multiple decades, and some code bases
may simply be abandoned as the software landscape changes anyway. The
reason we mention language mitigation, however long it may take, is that it
brings with it several important secondary benefits. Reduction of technical
debt and the resulting productivity benefits are chief among these. C and
its derivatives reflect the age in which they were designed. For instance,
C programmers must declare variables and functions defined outside the
current translation unit such that the compiler can emit code in a single
pass over the input files. Modern programming languages reflect the current
reality that computing cycles are cheap and programmer attention scarce.
Moreover, Balasubramanian et al. [2017] show that the features of the Rust
systems programming language can support security capabilities, such as
zero-copy software fault isolation, that cannot be implemented efficiently in
traditional languages. Only by abandoning the languages in the C family,
which have been spectacularly successful at any rate, can we make systems
programming more productive, safe, and accessible.

Acknowledgments
This material is based upon work partially supported by the Department of Defense
under Defense Advanced Research Projects Agency (DARPA) contract FA8750-15-
C-0124, Air Force contracts FA8721-05-C-0002 and FA8702-15-D-0001, and by the
National Science Foundation under awards CNS-1513837 and CNS-1619211.

Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA), its Contracting Agents,
the Air Force, the National Science Foundation, or any other agency of the U.S.
Government.


